sklearn.linear_model.enet_path

sklearn.linear_model.enet_path()

Calcula la ruta de red elástica con el descenso de coordenadas.

La función de optimización de red elástica varía para salidas mono y múltiples.

Para las tareas mono-salida es:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

Para tareas multi-salidas es:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Donde:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

es decir, la suma de la norma de cada fila.

Más información en el Manual de usuario.

Parámetros
X{array-like, sparse matrix} de forma (n_samples, n_features)

Datos de entrenamiento. Pase directamente como datos Fortran-contiguos para evitar la duplicación innecesaria de memoria. Si y es mono-salida entonces X puede ser disperso.

y{array-like, sparse matrix} de forma (n_samples,), o (n_samples, n_outputs)

Valores objetivo.

l1_ratiofloat, default=0.5

Número entre 0 y 1 pasado a la red elástica (escalado entre penalizaciones l1 y l2). l1_ratio=1 corresponde al Lasso.

epsfloat, default=1e-3

Longitud de la ruta. eps=1e-3 significa que alpha_min / alpha_max = 1e-3.

n_alphasint, default=100

Número de alfas a lo largo de la ruta de regularización.

alphasndarray, default=None

Lista de alfas donde calcular los modelos. Si es None los alfas se establecen automáticamente.

precompute“auto”, bool o array-like de forma (n_features, n_features), default=”auto”

Si usar una matriz precalculada Gram para acelerar los cálculos. Si se establece como 'auto', nosotros decidimos. La matriz de Gram puede también ser pasada como un argumento.

Xyarray-like de forma (n_features,) o (n_features, n_outputs), default=None

Xy = np.dot(X.T, y) que puede ser precalculado. Es útil sólo cuando la matriz Gram está precalculada.

copy_Xbool, default=True

Si es True, X se copiará; si no, puede ser sobrescrito.

coef_initndarray de forma (n_features, ), default=None

Los valores iniciales de los coeficientes.

verbosebool o entero, default=False

Cantidad de verbosidad.

return_n_iterbooleano, default=False

Si se devuelve o no el número de iteraciones.

positivobooleano, default=False

Si se establece como True, obliga a los coeficientes a ser positivos. (Sólo se permite cuando y.ndim ==1).

check_inputbool, default=True

Si se establece como False, las comprobaciones de validación de entrada se omiten (incluyendo la matriz de Gram cuando se proporciona). Se asume que serán manejados por el llamador.

**paramskwargs

Argumentos de palabra clave pasados al solucionador de descenso de coordenadas.

Devuelve
alphasndarray de forma (n_alphas,)

Los alfas a lo largo del camino donde se calculan los modelos.

coefsndarray de forma (n_features, n_alphas) o (n_outputs, n_features, n_alphas)

Coeficientes a lo largo del camino.

dual_gapsndarray de forma (n_alphas,)

Los huecos duales al final de la optimización para cada alfa.

n_iterslista de int

El número de iteraciones tomadas por el optimizador de descenso de coordenadas para alcanzar la tolerancia especificada para cada alfa. (Es devuelto cuando return_n_iter está establecido a True).

Notas

Para un ejemplo, ver examples/linear_model/plot_lasso_coordinate_descent_path.py.

Ejemplos usando sklearn.linear_model.enet_path