Autovector principal de Wikipedia

Una forma clásica de afirmar la importancia relativa de los vértices de un grafo es calcular el vector propio principal de la matriz de adyacencia para asignar a cada vértice los valores de los componentes del primer autovector como puntuación de centralidad:

En el gráfico de páginas web y enlaces, estos valores se denominan puntuaciones PageRank por Google.

El objetivo de este ejemplo es analizar el gráfico de enlaces dentro de los artículos de la wikipedia para clasificar los artículos por su importancia relativa según este eigenvector de centralidad.

La forma tradicional de calcular el vector propio principal es utilizar el método de iteración de potencia:

Aquí el cálculo se consigue gracias al algoritmo SVD aleatorio de Martinsson implementado en scikit-learn.

Los datos del gráfico se obtienen de los volcados de la DBpedia. DBpedia es una extracción de los datos estructurados latentes del contenido de Wikipedia.

# Author: Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause

from bz2 import BZ2File
import os
from datetime import datetime
from pprint import pprint
from time import time

import numpy as np

from scipy import sparse

from sklearn.decomposition import randomized_svd
from urllib.request import urlopen


print(__doc__)

# #############################################################################
# Where to download the data, if not already on disk
redirects_url = "http://downloads.dbpedia.org/3.5.1/en/redirects_en.nt.bz2"
redirects_filename = redirects_url.rsplit("/", 1)[1]

page_links_url = "http://downloads.dbpedia.org/3.5.1/en/page_links_en.nt.bz2"
page_links_filename = page_links_url.rsplit("/", 1)[1]

resources = [
    (redirects_url, redirects_filename),
    (page_links_url, page_links_filename),
]

for url, filename in resources:
    if not os.path.exists(filename):
        print("Downloading data from '%s', please wait..." % url)
        opener = urlopen(url)
        open(filename, 'wb').write(opener.read())
        print()


# #############################################################################
# Loading the redirect files


def index(redirects, index_map, k):
    """Find the index of an article name after redirect resolution"""
    k = redirects.get(k, k)
    return index_map.setdefault(k, len(index_map))


DBPEDIA_RESOURCE_PREFIX_LEN = len("http://dbpedia.org/resource/")
SHORTNAME_SLICE = slice(DBPEDIA_RESOURCE_PREFIX_LEN + 1, -1)


def short_name(nt_uri):
    """Remove the < and > URI markers and the common URI prefix"""
    return nt_uri[SHORTNAME_SLICE]


def get_redirects(redirects_filename):
    """Parse the redirections and build a transitively closed map out of it"""
    redirects = {}
    print("Parsing the NT redirect file")
    for l, line in enumerate(BZ2File(redirects_filename)):
        split = line.split()
        if len(split) != 4:
            print("ignoring malformed line: " + line)
            continue
        redirects[short_name(split[0])] = short_name(split[2])
        if l % 1000000 == 0:
            print("[%s] line: %08d" % (datetime.now().isoformat(), l))

    # compute the transitive closure
    print("Computing the transitive closure of the redirect relation")
    for l, source in enumerate(redirects.keys()):
        transitive_target = None
        target = redirects[source]
        seen = {source}
        while True:
            transitive_target = target
            target = redirects.get(target)
            if target is None or target in seen:
                break
            seen.add(target)
        redirects[source] = transitive_target
        if l % 1000000 == 0:
            print("[%s] line: %08d" % (datetime.now().isoformat(), l))

    return redirects


def get_adjacency_matrix(redirects_filename, page_links_filename, limit=None):
    """Extract the adjacency graph as a scipy sparse matrix

    Redirects are resolved first.

    Returns X, the scipy sparse adjacency matrix, redirects as python
    dict from article names to article names and index_map a python dict
    from article names to python int (article indexes).
    """

    print("Computing the redirect map")
    redirects = get_redirects(redirects_filename)

    print("Computing the integer index map")
    index_map = dict()
    links = list()
    for l, line in enumerate(BZ2File(page_links_filename)):
        split = line.split()
        if len(split) != 4:
            print("ignoring malformed line: " + line)
            continue
        i = index(redirects, index_map, short_name(split[0]))
        j = index(redirects, index_map, short_name(split[2]))
        links.append((i, j))
        if l % 1000000 == 0:
            print("[%s] line: %08d" % (datetime.now().isoformat(), l))

        if limit is not None and l >= limit - 1:
            break

    print("Computing the adjacency matrix")
    X = sparse.lil_matrix((len(index_map), len(index_map)), dtype=np.float32)
    for i, j in links:
        X[i, j] = 1.0
    del links
    print("Converting to CSR representation")
    X = X.tocsr()
    print("CSR conversion done")
    return X, redirects, index_map


# stop after 5M links to make it possible to work in RAM
X, redirects, index_map = get_adjacency_matrix(
    redirects_filename, page_links_filename, limit=5000000)
names = {i: name for name, i in index_map.items()}

print("Computing the principal singular vectors using randomized_svd")
t0 = time()
U, s, V = randomized_svd(X, 5, n_iter=3)
print("done in %0.3fs" % (time() - t0))

# print the names of the wikipedia related strongest components of the
# principal singular vector which should be similar to the highest eigenvector
print("Top wikipedia pages according to principal singular vectors")
pprint([names[i] for i in np.abs(U.T[0]).argsort()[-10:]])
pprint([names[i] for i in np.abs(V[0]).argsort()[-10:]])


def centrality_scores(X, alpha=0.85, max_iter=100, tol=1e-10):
    """Power iteration computation of the principal eigenvector

    This method is also known as Google PageRank and the implementation
    is based on the one from the NetworkX project (BSD licensed too)
    with copyrights by:

      Aric Hagberg <hagberg@lanl.gov>
      Dan Schult <dschult@colgate.edu>
      Pieter Swart <swart@lanl.gov>
    """
    n = X.shape[0]
    X = X.copy()
    incoming_counts = np.asarray(X.sum(axis=1)).ravel()

    print("Normalizing the graph")
    for i in incoming_counts.nonzero()[0]:
        X.data[X.indptr[i]:X.indptr[i + 1]] *= 1.0 / incoming_counts[i]
    dangle = np.asarray(np.where(np.isclose(X.sum(axis=1), 0),
                                 1.0 / n, 0)).ravel()

    scores = np.full(n, 1. / n, dtype=np.float32)  # initial guess
    for i in range(max_iter):
        print("power iteration #%d" % i)
        prev_scores = scores
        scores = (alpha * (scores * X + np.dot(dangle, prev_scores))
                  + (1 - alpha) * prev_scores.sum() / n)
        # check convergence: normalized l_inf norm
        scores_max = np.abs(scores).max()
        if scores_max == 0.0:
            scores_max = 1.0
        err = np.abs(scores - prev_scores).max() / scores_max
        print("error: %0.6f" % err)
        if err < n * tol:
            return scores

    return scores

print("Computing principal eigenvector score using a power iteration method")
t0 = time()
scores = centrality_scores(X, max_iter=100)
print("done in %0.3fs" % (time() - t0))
pprint([names[i] for i in np.abs(scores).argsort()[-10:]])

Tiempo total de ejecución del script: (0 minutos 0.000 segundos)

Galería generada por Sphinx-Gallery