Nota
Haz clic en aquí para descargar el código de ejemplo completo o para ejecutar este ejemplo en tu navegador a través de Binder
Libsvm GUI¶
Un sencillo frontend gráfico para Libsvm destinado principalmente a fines didácticos. Puede crear puntos de datos apuntando y haciendo clic y visualizar la región de decisión inducida por diferentes núcleos y ajustes de parámetros.
Para crear ejemplos positivos pulse el botón izquierdo del ratón; para crear ejemplos negativos pulse el botón derecho.
Si todos los ejemplos son de la misma clase, utiliza un SVM de una clase.
print(__doc__)
# Author: Peter Prettenhoer <peter.prettenhofer@gmail.com>
#
# License: BSD 3 clause
import matplotlib
matplotlib.use('TkAgg')
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
try:
from matplotlib.backends.backend_tkagg import NavigationToolbar2Tk
except ImportError:
# NavigationToolbar2TkAgg was deprecated in matplotlib 2.2
from matplotlib.backends.backend_tkagg import (
NavigationToolbar2TkAgg as NavigationToolbar2Tk
)
from matplotlib.figure import Figure
from matplotlib.contour import ContourSet
import sys
import numpy as np
import tkinter as Tk
from sklearn import svm
from sklearn.datasets import dump_svmlight_file
y_min, y_max = -50, 50
x_min, x_max = -50, 50
class Model:
"""The Model which hold the data. It implements the
observable in the observer pattern and notifies the
registered observers on change event.
"""
def __init__(self):
self.observers = []
self.surface = None
self.data = []
self.cls = None
self.surface_type = 0
def changed(self, event):
"""Notify the observers. """
for observer in self.observers:
observer.update(event, self)
def add_observer(self, observer):
"""Register an observer. """
self.observers.append(observer)
def set_surface(self, surface):
self.surface = surface
def dump_svmlight_file(self, file):
data = np.array(self.data)
X = data[:, 0:2]
y = data[:, 2]
dump_svmlight_file(X, y, file)
class Controller:
def __init__(self, model):
self.model = model
self.kernel = Tk.IntVar()
self.surface_type = Tk.IntVar()
# Whether or not a model has been fitted
self.fitted = False
def fit(self):
print("fit the model")
train = np.array(self.model.data)
X = train[:, 0:2]
y = train[:, 2]
C = float(self.complexity.get())
gamma = float(self.gamma.get())
coef0 = float(self.coef0.get())
degree = int(self.degree.get())
kernel_map = {0: "linear", 1: "rbf", 2: "poly"}
if len(np.unique(y)) == 1:
clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()],
gamma=gamma, coef0=coef0, degree=degree)
clf.fit(X)
else:
clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C,
gamma=gamma, coef0=coef0, degree=degree)
clf.fit(X, y)
if hasattr(clf, 'score'):
print("Accuracy:", clf.score(X, y) * 100)
X1, X2, Z = self.decision_surface(clf)
self.model.clf = clf
self.model.set_surface((X1, X2, Z))
self.model.surface_type = self.surface_type.get()
self.fitted = True
self.model.changed("surface")
def decision_surface(self, cls):
delta = 1
x = np.arange(x_min, x_max + delta, delta)
y = np.arange(y_min, y_max + delta, delta)
X1, X2 = np.meshgrid(x, y)
Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()])
Z = Z.reshape(X1.shape)
return X1, X2, Z
def clear_data(self):
self.model.data = []
self.fitted = False
self.model.changed("clear")
def add_example(self, x, y, label):
self.model.data.append((x, y, label))
self.model.changed("example_added")
# update decision surface if already fitted.
self.refit()
def refit(self):
"""Refit the model if already fitted. """
if self.fitted:
self.fit()
class View:
"""Test docstring. """
def __init__(self, root, controller):
f = Figure()
ax = f.add_subplot(111)
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlim((x_min, x_max))
ax.set_ylim((y_min, y_max))
canvas = FigureCanvasTkAgg(f, master=root)
try:
canvas.draw()
except AttributeError:
# support for matplotlib (1.*)
canvas.show()
canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
canvas.mpl_connect('button_press_event', self.onclick)
toolbar = NavigationToolbar2Tk(canvas, root)
toolbar.update()
self.controllbar = ControllBar(root, controller)
self.f = f
self.ax = ax
self.canvas = canvas
self.controller = controller
self.contours = []
self.c_labels = None
self.plot_kernels()
def plot_kernels(self):
self.ax.text(-50, -60, "Linear: $u^T v$")
self.ax.text(-20, -60, r"RBF: $\exp (-\gamma \| u-v \|^2)$")
self.ax.text(10, -60, r"Poly: $(\gamma \, u^T v + r)^d$")
def onclick(self, event):
if event.xdata and event.ydata:
if event.button == 1:
self.controller.add_example(event.xdata, event.ydata, 1)
elif event.button == 3:
self.controller.add_example(event.xdata, event.ydata, -1)
def update_example(self, model, idx):
x, y, l = model.data[idx]
if l == 1:
color = 'w'
elif l == -1:
color = 'k'
self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0)
def update(self, event, model):
if event == "examples_loaded":
for i in range(len(model.data)):
self.update_example(model, i)
if event == "example_added":
self.update_example(model, -1)
if event == "clear":
self.ax.clear()
self.ax.set_xticks([])
self.ax.set_yticks([])
self.contours = []
self.c_labels = None
self.plot_kernels()
if event == "surface":
self.remove_surface()
self.plot_support_vectors(model.clf.support_vectors_)
self.plot_decision_surface(model.surface, model.surface_type)
self.canvas.draw()
def remove_surface(self):
"""Remove old decision surface."""
if len(self.contours) > 0:
for contour in self.contours:
if isinstance(contour, ContourSet):
for lineset in contour.collections:
lineset.remove()
else:
contour.remove()
self.contours = []
def plot_support_vectors(self, support_vectors):
"""Plot the support vectors by placing circles over the
corresponding data points and adds the circle collection
to the contours list."""
cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1],
s=80, edgecolors="k", facecolors="none")
self.contours.append(cs)
def plot_decision_surface(self, surface, type):
X1, X2, Z = surface
if type == 0:
levels = [-1.0, 0.0, 1.0]
linestyles = ['dashed', 'solid', 'dashed']
colors = 'k'
self.contours.append(self.ax.contour(X1, X2, Z, levels,
colors=colors,
linestyles=linestyles))
elif type == 1:
self.contours.append(self.ax.contourf(X1, X2, Z, 10,
cmap=matplotlib.cm.bone,
origin='lower', alpha=0.85))
self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k',
linestyles=['solid']))
else:
raise ValueError("surface type unknown")
class ControllBar:
def __init__(self, root, controller):
fm = Tk.Frame(root)
kernel_group = Tk.Frame(fm)
Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel,
value=0, command=controller.refit).pack(anchor=Tk.W)
Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel,
value=1, command=controller.refit).pack(anchor=Tk.W)
Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel,
value=2, command=controller.refit).pack(anchor=Tk.W)
kernel_group.pack(side=Tk.LEFT)
valbox = Tk.Frame(fm)
controller.complexity = Tk.StringVar()
controller.complexity.set("1.0")
c = Tk.Frame(valbox)
Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(c, width=6, textvariable=controller.complexity).pack(
side=Tk.LEFT)
c.pack()
controller.gamma = Tk.StringVar()
controller.gamma.set("0.01")
g = Tk.Frame(valbox)
Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT)
g.pack()
controller.degree = Tk.StringVar()
controller.degree.set("3")
d = Tk.Frame(valbox)
Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT)
d.pack()
controller.coef0 = Tk.StringVar()
controller.coef0.set("0")
r = Tk.Frame(valbox)
Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT)
r.pack()
valbox.pack(side=Tk.LEFT)
cmap_group = Tk.Frame(fm)
Tk.Radiobutton(cmap_group, text="Hyperplanes",
variable=controller.surface_type, value=0,
command=controller.refit).pack(anchor=Tk.W)
Tk.Radiobutton(cmap_group, text="Surface",
variable=controller.surface_type, value=1,
command=controller.refit).pack(anchor=Tk.W)
cmap_group.pack(side=Tk.LEFT)
train_button = Tk.Button(fm, text='Fit', width=5,
command=controller.fit)
train_button.pack()
fm.pack(side=Tk.LEFT)
Tk.Button(fm, text='Clear', width=5,
command=controller.clear_data).pack(side=Tk.LEFT)
def get_parser():
from optparse import OptionParser
op = OptionParser()
op.add_option("--output",
action="store", type="str", dest="output",
help="Path where to dump data.")
return op
def main(argv):
op = get_parser()
opts, args = op.parse_args(argv[1:])
root = Tk.Tk()
model = Model()
controller = Controller(model)
root.wm_title("Scikit-learn Libsvm GUI")
view = View(root, controller)
model.add_observer(view)
Tk.mainloop()
if opts.output:
model.dump_svmlight_file(opts.output)
if __name__ == "__main__":
main(sys.argv)
Tiempo total de ejecución del script: (0 minutos 0.000 segundos)